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Abstract

In this text, we study factorizations of polynomials over the tropical hyperfield and the sign hyperfield,
hich we call tropical polynomials and sign polynomials, respectively. We classify all irreducible
olynomials in either case. We show that tropical polynomials factor uniquely into irreducible factors,
ut that unique factorization fails for sign polynomials. We describe division algorithms for tropical and
ign polynomials by linear terms that correspond to roots of the polynomials.
c 2021 The Author(s). Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).
his is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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0. Introduction

Hyperfields were introduced by Marc Krasner in 1956 in his paper [5] as a generalization of
elds by allowing the addition to be multi-valued. Since then a considerable amount of literature
n hyperfields has built up, but, still, the notion of a hyperfield stayed largely in the shadow
f mainstream mathematics until around a decade ago when the works [7] of Viro and [3] of
onnes and Consani showed the potential of hyperfields for tropical and arithmetic geometry.
ore recently, Baker and Bowler have demonstrated in [1] the relevance of hyperfields for
atroid theory.
The joint paper [2] of Baker and the second author of this text provides additional evidence

or the usefulness of this concept: a study of roots of polynomials, and their multiplicities,
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over hyperfields leads to a simultaneous proof of Newton’s polygon rule and Descartes’ rule
of signs. The hyperfields that underlie these rules are the tropical hyperfield T and the sign
hyperfield S, respectively.

In this paper, we complement the theory from [2] by some results on the factorization
of polynomials over T and S, which we call tropical polynomials and sign polynomials,
respectively. Before we turn to a description of our findings, we introduce the two main actors
of our text.

The tropical and the sign hyperfield

Hyperfields generalize fields in the sense that the hypersum of elements is a subset rather
than an element. The tropical hyperfield T is the set R⩾0 of non-negative real numbers together
with the usual multiplication and with the hyperaddition given as follows: for a1, . . . , an ∈ R⩾0

and i such that ai = max{a1, . . . , an}, we have

a1 ⊞ · · · ⊞ an =

{{
max{ai }

}
if a j < ai for all i ̸= j;

[0, ai ] if ak ⩽ ai = a j for some i ̸= j and all k.

The sign hyperfield S is the set {0, 1, −1} together with the obvious multiplication and with
he following hyperaddition: for a1, . . . , an ∈ S, we have

a1 ⊞ · · · ⊞ an =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{0} if a1 = . . . = an = 0;
{1} if 1 ∈ {a1, . . . , an} ⊂ {0, 1};
{−1} if −1 ∈ {a1, . . . , an} ⊂ {0, −1};
S if {1, −1} ⊂ {a1, . . . , an}.

Factorization of polynomials

Let F be a hyperfield—the reader might want to think of F as one of T or S. A polynomial
(of degree n) over F is an expression p = cnT n

+ . . . + c1T + c0 with ci ∈ F and cn ̸= 0
unless n = 0. Given two polynomials p =

∑
ci T i and q =

∑
di T i over F , we define their

hyperproduct as the set

p⊡ q =
{ ∑

ei T i
⏐⏐ ei ∈ ⊞

k+l=i
ckdl

}
of polynomials over F . We define recursively the hyperproduct of n polynomials q1, . . . , qn

over F as
n

⊡
i=1

qi =

⋃
p∈⊡ n−1

i=1 qi

p⊡ qn.

polynomial p is irreducible if its degree is positive and if for all polynomials q1 and q2 such
that p ∈ q1 ⊡ q2 either q1 or q2 is of degree 0. A quotient of p by q is a polynomial q ′ such
that p ∈ q ⊡ q ′.

A polynomial p has a unique factorization into irreducibles if there are irreducible
polynomials q1, . . . , qn that are unique up to a permutation and up to multiplication by a
constant polynomial such that p ∈ c n q for c ∈ F .
⊡⊡ i=1 i
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Unique factorization for tropical polynomials and its failure for sign polynomials

Our first result is a classification of all irreducible tropical polynomials and the unique
actorization over T. The following is Theorem 3.2.

heorem A. The irreducible tropical polynomials are precisely the linear tropical polynomi-
ls, and every tropical polynomial has a unique factorization into irreducibles.

The list of irreducible sign polynomials is as follows, which is Theorem 4.1.

heorem B. Up to multiplication by −1, the irreducible sign polynomials are T , T −1, T +1
and T 2

+ 1.

In contrast to tropical polynomials, sign polynomials fail to have unique factorizations in
general. For example the sign polynomial T 3

+ T 2
+ T + 1 is contained in both products

(T + 1)⊡ (T + 1)⊡ (T + 1) and (T + 1)⊡ (T 2
+ 1);

f. Section 4.2 for more details.

ivision algorithms

A fundamental fact that enters the definition of the multiplicity of a root is that if a
olynomial p over a hyperfield F has a root a ∈ F , then p is divisible by T − a (cf.
2, Lemma A]). In the case of usual fields, this follows directly from the division algorithm for
olynomials. There is a generalization to hyperfields (cf. [4, Thm. 3.4]), but this generalization
oes not provide an algorithm to compute a quotient of p by T − a due to the ambiguity of
he multi-valued addition of the hyperfield. In particular, it happens that there are several such
uotients.

In this text, we describe algorithms for the division of tropical and sign polynomials by
inear polynomials. These algorithms might be useful for explicit calculations of multiplicities
f tropical and sign polynomials, which is of interest for their link to Newton polygons and
escartes’ rule of signs.
The division algorithms for tropical polynomials is as follows. Let p =

∑
ci T i be a tropical

olynomial of degree n. By Theorem A, p factors into a unique product cn
∏

(T +ai ) of linear
olynomials T + ai where we assume that a1 ⩽ · · · ⩽ an . It follows from the fundamental
heorem for the tropical hyperfield (cf. [2, Theorem 4.1]) that {a1, . . . , an} are the roots of p,
nd that the multiplicity m of a root a of p coincides with the number of ai ’s that are equal
o a, i.e.

a = ak = . . . = ak+m−1

or some k ∈ {1 . . . , n − m + 1} and ak−1 < ak if k − 1 ⩾ 1 as well as ak+m−1 < ak+m if
+ m ⩽ n. Since the case a = 0 is trivial, let us assume that a is not zero. The following is
heorem 3.4.

heorem C. Define the tropical numbers d0, . . . , dn−1 by the following algorithm.

(1) If k ⩽ n −m, then let dn−1 = cn . For i = n −2, . . . , k +m −1, we define (in decreasing
order)

di = max{ci+1, adi+1}.
799
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(2) If k ⩾ 2, then let d0 = a−1c0. For i = 1, . . . , k − 2, we define (in increasing order)

di = max{a−1ci , a−1di−1}.

(3) For i = k − 1, . . . , k + m − 2, we define

di = ai+2 · · · ancn.

hen the polynomial q =
∑

di T i is a divisor of p by T + a.

The division algorithm for sign polynomials can be described more compactly as follows,
hich is Theorem 4.2.

heorem D. Let p =
∑

ci T i be a sign polynomial of degree n where c0, . . . , cn ∈ S. Let
∈ {±1} be a root of p. Define

l = min
{

i ∈ N
⏐⏐ ci ̸= 0

}
and k = min

{
i ∈ N

⏐⏐ ci+1 = −ai+1−lcl
}
.

efine recursively for i = n − 1, . . . , 0 (in decreasing order)

(1) di = ci+1 if ci+1 ̸= 0 and i > k;
(2) di = adi+1 if ci+1 = 0 and i > k;

(3) di = −ai+l−1cl if l ⩽ i ⩽ k;
(4) di = 0 if 0 ⩽ i < l.

hen q =
∑

di T i is a quotient of p by T − a.

. Hyperfields

A hyperfield is a set F together with a multiplication, i.e. a map · : F × F → F , and with
hyperaddition, which is a map ⊞ : F × F → P(F) where P(F) is the power set of F , that

atisfies the following axioms:

(HF1) There are unique elements 0 and 1 of F such that (F, ·, 1) is a commutative monoid
and such that F×

= F − {0} is a group with respect to ·.
(HF2) For all a, b, c ∈ F , we have a · b ⊞ a · c = {a · d|d ∈ b ⊞ c}. (distributive)
(HF3) (F ⊞ , 0) is a commutative hypergroup, i.e. we have for all a, b, c ∈ F that

(HG1) a ⊞ b is not empty; (non-empty sums)
(HG2) a ⊞ b = b ⊞ a; (commutative)
(HG3) a ⊞ 0 = {a}; (neutral element)
(HG4) there is a unique d ∈ F such that 0 ∈ a ⊞ d; (additive inverse)
(HG5)

⋃
{a ⊞ d|d ∈ b ⊞ c} =

⋃
{d ⊞ c|d ∈ a ⊞ b}. (associative)

n the following, we write ab for a ·b and −a for the additive inverse of a, i.e. 0 ∈ a ⊞ (−a).
or n ⩾ 3 and a1, . . . , an ∈ F , we define recursively the subset

n

⊞
i=1

ai =

⋃
b∈⊞ n−1

i=1 ai

b ⊞ an,

f F , which does not depend on the order of the ai thanks to associativity and commutativity.
The axioms of a hyperfield imply that 0 · a = 0 for all a ∈ F and that

HG6) a ∈ b⊞ c if and only if −b ∈ (−a)⊞ c (reversibility)

or all a, b, c ∈ F .
800
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1.1. Examples

A primary example of hyperfields are fields. Namely, given a field K , we can define a
yperaddition ⊞ on K by the rule a ⊞ b = {a + b}, which turns K into a hyperfield.

To give some examples of hyperfields that do not come from fields, let us introduce the two
ain characters of our story: the tropical hyperfield T and the sign hyperfield S.
The tropical hyperfield T is the set R⩾0 of nonnegative real numbers together with their

sual multiplication and the hyperaddition defined by the rule

a ⊞ b =

{{
max{a, b}

}
if a ̸= b;

[0, a] if a = b.

n other words, we have c ∈ a ⊞ b if and only if the maximum among a, b and c appears
wice. Note that −a = a for every a ∈ T.

The sign hyperfield S is the set {0, 1, −1} together with the obvious multiplication and with
he hyperaddition given by the table

⊞ 0 1 −1

0 {0} {1} {−1}

1 {1} {1} {0, 1, −1}

−1 {−1} {0, 1, −1} {−1}

1.2. Morphisms of hyperfields

A morphism between hyperfields F1 and F2 is a map f : F1 → F2 such that f (0) = 0,
f (1) = 1, f (ab) = f (a) f (b) and f (a ⊞ b) ⊂ f (a) ⊞ f (b) for all a, b ∈ F1. Note that the
atter property is equivalent with requiring that whenever b ∈ ⊞ ai in F1, then f (b) ∈ ⊞ f (ai )
n F2.

Let us describe the two examples of morphisms of hyperfields that are of interest for our
urpose. The first example is that of the sign map sign : R → S that associates with a nonzero
eal number a ∈ R its sign sign(a) = a/|a| and that maps 0 to 0.

The second example is based on a general fact observed by Viro in [7]. Namely, by
dentifying a field K with its associated hyperfield and the nonnegative real numbers R⩾0 with
he tropical hyperfield T as sets, a nonarchimedean absolute value v : K → R⩾0 is the same
s a morphism of hyperfields v : K → T.

. Polynomials over hyperfields

A polynomial over a hyperfield F is an expression of the form p = cnT n
+ · · · + c1T + c0

ith c0, . . . , cn ∈ F , or, more formally, a sequence (ci )i∈N of elements ci ∈ F for which
i ∈ N|ci ̸= 0} is finite. We denote the set of all polynomials over F by Poly(F).

Note that for a field K , Poly(K ) is equal to the usual polynomial algebra K [T ]. For reasons
xplained in [2, Appendix A], we refrain from the notation F[T ] for the set Poly(F) of
olynomials over a hyperfield F .

We will identify elements a of F with the constant polynomial p = a over F . In particular,
e write 0 for the zero polynomial p = 0 and 1 for the constant polynomial p = 1.
801
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2.1. Hyperproducts

The multiplication and hyperaddition of a hyperfield F endows the set Poly(F) of poly-
nomials over F with an additive and a multiplicative structure. The additive structure is the
hyperaddition on Poly(F) that results from the hyperaddition of coefficients, which might not
come as a surprise. Since the hyperaddition of polynomials is not of interest for our present
purpose, we omit a discussion, but refer the reader to [2, Appendix A] for details.

The multiplicative structure of Poly(F) is the hypermultiplication

⊡ : Poly(F) × Poly(F) −→ P
(

Poly(F)
)

that maps a pair of polynomials p =
∑

ci T i and q =
∑

di T i to the subset

p⊡ q =
{ ∑

ei T i
⏐⏐ ei ∈ ⊞

k+l=i
ckdl

}
of Poly(F). Note that in the case of a hyperfield coming from a field F , p⊡ q = {pq} is the
singleton containing the usual product of p and q .

It is easily verified that this hypermultiplication satisfies the following properties in analogy
to that of a hyperaddition (cf. (HG1)–(HG3) in Section 1): for all p, q ∈ Poly(F), we have

(HM1) p⊡ q is not empty; (non-empty sums)
(HM2) p⊡ q = q ⊡ p; (commutative)
(HM3) p⊡ 1 = {p}. (neutral element)

Similar as for the hyperaddition of a hyperfield, we extend ⊡ recursively to n-fold products
by the rule

n

⊡
i=1

qi =

⋃
p∈⊡ n−1

i=1 qi

p⊡ qn.

Note that the definition of the n-fold product depends on the order of the factors in general
ince, in contrast to the situation over a field, ⊡ fails to be associative for some hyperfields.
his is, in particular, the case for Poly(T) and Poly(S), as shown in [6].

.2. The degree

The degree of a polynomial p = cnT n
+ · · · + c0 over a hyperfield F is the largest k ∈ N

uch that ck ̸= 0, which we denote by deg p.
For n polynomials q1, . . . , qn , we have deg p =

∑
deg qi for every p ∈ ⊡ qi . In so far,

1 ∈ p⊡ q implies that deg p = deg q = 0 and thus p = a and q = a−1 for some a ∈ F×.
or every p =

∑
cnT i , we have p⊡ aT k

=
{∑

aci T i+k
}

and, in particular, p⊡ 0 = {0}. We
rite −p for the unique element

∑
(−cn)T n in (−1)⊡ p.

.3. Factorizations

We say that p and q are associated, and write p ∼ q , if p ∈ a ⊡ q for some a ∈ F×. Note
hat ∼ is an equivalence relation. A polynomial p is monic if cdeg p = 1. We conclude that for
very nonzero polynomial p there is a unique monic polynomial q with p ∼ q.

Let p, q1, . . . , qn ∈ Poly(F) be polynomials over F . We say that p factors into the product
f q , . . . , q if p ∈ q .
1 n ⊡ i

802
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We can extend a morphism f : F1 → F2 to a map f : Poly(F1) → Poly(F2) between
olynomials: given a polynomial p =

∑
ci T i over F1, we define f (p) =

∑
f (ci )T i .

emma 2.1. Let f : F1 → F2 be a morphism of hyperfields, n ⩾ 2 and p, q1, . . . , qn ∈

oly(F1) such that p ∈ ⊡ qi . Then f (p) ∈ ⊡ f (qi ).

roof. Let p =
∑

c j T j and qi =
∑

di, j T j . We prove the claim by induction on n ⩾ 2.
If n = 2, then p ∈ q1 ⊡ q2 means that ci ∈ ⊞ k+l=i d1,kd2,l in F1. Since f is a morphism

f hyperfields, we have f (ci ) ∈ ⊞ k+l=i f (d1,k) f (d2,l) in F2, and thus f (p) ∈ f (q1)⊡ f (q2)
s claimed.

If n > 2, then r ∈ ⊡ n−1
i=1 qi and the inductive hypothesis imply that f (r ) ∈ ⊡ n−1

i=1 f (qi ).
his and the case n = 2 show that p ∈ ⊡ qi implies that

f (p) ∈ f
( ⋃

r∈⊡ n−1
i=1 qi

r ⊡ qn

)
=

⋃
r∈⊡ n−1

i=1 qi

f
(
r ⊡ qn

)
⊂

⋃
f (r )∈⊡ n−1

i=1 f (qi )

f (r )⊡ f (qn),

which establishes the claim of the lemma. □

.4. Irreducible polynomials

We say that a polynomial p =
∑

ci T i over a hyperfield F is irreducible if deg p ⩾ 1 and
f for every factorization p ∈ q1 ⊡ q2, we have p ∼ q1 or p ∼ q2. Note that if p ∼ q , then p
s irreducible if and only if q is irreducible.

Since p ∈ q1 ⊡ q2 implies deg p = deg q1 + deg q2, we have p ∼ q1 if and only if
eg p = deg q1, or if, equivalently, q2 = c0 ∈ F× is a constant nonzero polynomial. It follows

hat every linear polynomial p = c1T +c0 (with c1 ̸= 0) is irreducible. In Lemma 2.6, we give
n irreducibility criterion for quadratic and cubic polynomials.

The following fact was pointed out to us by Trevor Gunn.

emma 2.2. Let p ∈ Poly(F) be irreducible, n ⩾ 2 and p ∈ ⊡ n
i=1qi a factorization. Then

here is an i ∈ {1, . . . , n} such that p ∼ qi .

roof. We prove the claim by induction on n. The case n = 2 follows by the definition of
rreducibility.

Assume that n > 2. By the definition of ⊡ n
i=1qi , there is an r in ⊡ n−1

i=1 qi such that
p ∈ r ⊡ qn . Since p is irreducible, we have p ∼ r or p ∼ qn . If p ∼ qn , then there is
nothing to prove. If p ∼ r , then r is also irreducible. By the inductive hypothesis, applied to r ,
we have p ∼ r ∼ qi for some i ∈ {1, . . . , n −1}, which completes the proof of the lemma. □

We say that Poly(F) has the unique factorization property if for any two factorizations
p ∈ q1 ⊡ · · · ⊡ qn and p ∈ q ′

1 ⊡ · · · ⊡ q ′
m into irreducible factors q1, . . . , qn, q ′

1, . . . , q ′
m , we

have n = m and qi ∼ q ′

σ(i) for some permutation σ of {1, . . . , n}.
We conclude with the following implication of unique factorization on a weakened form of

associativity. By definition, we have p⊡ q ⊡ r = (p⊡ q)⊡ r . In contrast, p⊡ (q ⊡ r ) must
be read as

⋃
{p⊡ s|s ∈ q ⊡ r}.

Lemma 2.3. If Poly(F) has the unique factorization property, then (p⊡ q)⊡ r = p⊡ (q ⊡ r )
for all irreducible p, q, r ∈ Poly(F).
803
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Proof. Let p, q, r ∈ Poly(F) irreducible polynomials. Since Poly(F) has the unique factoriza-
ion property, we have s ∈ (p⊡ q)⊡ r if and only if s ∈ (q ⊡ r )⊡ p. Using the commutativity
f ⊡ , we find the desired equality (p⊡ q)⊡ r = (q ⊡ r )⊡ p = p⊡ (q ⊡ r ). □

.5. Roots

Let a ∈ F and p =
∑

ci T i be a polynomial over a hyperfield F . We say that a is a root
of p, and write 0 ∈ p(a), if 0 ∈ ⊞ ci ai . Alternatively, we can characterize roots in terms of
the following fact, which is Lemma A in [2].

Lemma 2.4. Let a ∈ F and p ∈ Poly(F). Then 0 ∈ p(a) if and only if there exists a
∈ Poly(F) such that p ∈ (T − a)⊡ q.

Note that if p =
∑

ci T i and q =
∑

di T i , then the relation p ∈ (T − a)⊡ q is equivalent
ith n = deg p = 1 + deg q and the relations

c0 = −ad0, ci ∈ (−adi ) ⊞ di−1 for i = 1, . . . , n − 1, and cn = dn−1.

xample 2.5. In the case of a field K , we have 0 ∈ p(a) in the hyperfield sense if and only
if 0 = p(a) in the usual sense, and we have p ∈ (T − a)⊡ q in the hyperfield sense if and
only if p = (T − a)q in the usual sense.

As an immediate consequence of Lemma 2.4, we see that an irreducible polynomial of
degree at least 2 cannot have any roots. For quadratic and cubic polynomials, this implication
can be reversed.

Lemma 2.6. Let p be a polynomial over F of degree 2 or 3. Then p is irreducible if and
nly if p does not have a root in F.

roof. As noted before, if p is irreducible, it cannot have any roots. If p is not irreducible, then
p ∈ q1 ⊡ q2 for a linear polynomial q1 and polynomial q2 of degree 1 or 2. After multiplying

2 with the leading coefficient d1 of q1, and q1 by its inverse d−1
1 , we can assume that q1 is of

he form T − a. Thus we have p ∈ (T − a)⊡ q2, i.e. a is a root of p by Lemma 2.4. □

.6. A non-deterministic division algorithm

As explained in [4, Thm. 3.4], polynomials over hyperfields admit an Euclidean algorithm
hat is based on non-deterministic choices in each step. In this section, we include an
ndependent treatment of this algorithm in the case of the division of a polynomial p by a linear
erm. We will improve on this in the cases of the tropical hyperfield and the sign hyperfield in
ections 3 and 4, respectively, which allow for deterministic choices.

Let F be a hyperfield, a ∈ F and p =
∑

ci T i a polynomial of degree n. Define Dn = {0}

nd for decreasing i = n − 1, . . . ,−1, the subsets Di = ci+1 ⊞ aDi+1.

emma 2.7. For every i ∈ {−1, . . . , n}, we have

Di =

n

⊞
k=i+1

ckak−i−1.
804
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Proof. We prove this by induction on i = n, . . . ,−1. The result follows for i = n by the
efinition of the empty hypersum as {0}. If i < n, then we have

Di = ci+1 ⊞ aDi+1

= ci+1 ⊞ a·

n

⊞
k=i+2

ckak−(i+1)−1

= ci+1ai+1−i−1 ⊞
n

⊞
k=i+2

ckak−i−1
=

n

⊞
k=i+1

ckak−i−1,

as claimed. □

Corollary 2.8. The element a is a root of p if and only if 0 ∈ D−1.

Proof. By Lemma 2.7, we have D−1 = ⊞ n
k=0ckak−(−1)−1

= p(a), and thus 0 ∈ D−1 = p(a)
if and only if a is a root of p. □

Proposition 2.9. Let a ∈ F be a root of p =
∑

ci T i and let D−1, . . . , Dn be as before.
Then for every i = −1, . . . , n − 2 and every di ∈ Di , there is a di+1 ∈ Di+1 such that
ci+1 ∈ di ⊞ (−adi+1). Moreover, if d−1 = 0, then d0 = −a−1c0 and p ∈ (T − a)q for

=
∑n−1

i=0 di T i .

Proof. By the definition of Di as ci+1 ⊞ aDi+1, there is for every di ∈ Di a di+1 ∈ Di+1
such that di ∈ ci+1 ⊞ adi+1, or, equivalently, ci+1 ∈ di ⊞ (−adi+1), which proves the first
assertion.

If d−1 = 0, then c0 ∈ 0 ⊞ (−ad0) if and only if d0 = −a−1c0. By definition, we have
Dn−1 = cn ⊞ aDn = {cn} and thus dn−1 = cn . Summing up, these relations show that

=
∑

di T i divides p, i.e. p ∈ (T − a)q . □

3. Factorizations of tropical polynomials

A tropical polynomial is a polynomial over the tropical hyperfield T. In this section, we
use the fundamental theorem for the tropical hyperfield to establish the unique factorization of
tropical polynomials into linear polynomials, and we describe a division algorithm.

3.1. Unique factorization for tropical polynomials

The fact that every polynomial function on the tropical line is piecewise linear can be
expressed by saying that every polynomial function over the tropical numbers factors uniquely
into linear functions. This is sometimes called the fundamental theorem of tropical algebra.

This result is reflected by the following variant for the tropical hyperfield, which we call
the fundamental theorem for the tropical hyperfield.

Let p =
∑

ci T i be a monic polynomial of degree n over T and let a1, . . . , an ∈ T. Then
we have

p ∈

n

⊡
i=1

(T + ai ) if and only if ci ∈ ⊞
ei+1<···<en

aei+1 · · · aen for all i = 0, . . . , n − 1.

f a1 ⩽ · · · ⩽ an , then this is equivalent to the conditions that ci ⩽ ai+1 · · · an for all
= 0, . . . , n − 1, with equality holding if ai < ai+1. The following is Theorem 4.1 in [2].
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Theorem 3.1 (Fundamental Theorem for the Tropical Hyperfield). Let p =
∑n

i=0 ci T i be a
onic polynomial of degree n over T. Then there is a unique sequence a1, . . . , an ∈ T with

1 ⩽ · · · ⩽ an such that p ∈ ⊡ (T +ai ), and a ∈ T is a root of p if and only if a ∈ {a1, . . . , an}.

In addition, [2, Thm. 4.1] provides an effective way to compute the tropical numbers
1, . . . , an: they correspond to the slopes of the linear segments of the Newton polygon of

p; cf. Section 3.3 for an example. This allows us to formulate a division algorithm for tropical
olynomials in Section 3.2.

A direct consequence of Theorem 3.1 is the unique factorization of tropical polynomials.

heorem 3.2. The irreducible tropical polynomials are precisely the linear tropical polyno-
ials, and Poly(T) has the unique factorization property.

emark 3.3. Using the methods of this text, we find the following short argument to prove the
act that every irreducible tropical polynomial is linear. Namely, consider a surjective morphism

: K → T from an algebraically closed field K to T. For example, we could take the
exponential) valuation vp : C{T } → T of the field of Puiseux series K = C{T } over C

with real exponents.
For an irreducible tropical polynomial p =

∑
ci T i , we choose elements ĉi ∈ K with

v(ĉi ) = ci . By Lemma 2.1, the polynomial p̂ =
∑

ĉi T i is irreducible over K . Since K is
algebraically closed, p̂ is linear, and so is p = v( p̂).

3.2. A division algorithm for tropical polynomials

While it is a direct calculation to verify whether 0 ∈ p(a) for an element a of T and a
tropical polynomial p, it is not so clear how to find a q ∈ Poly(F) that satisfies p ∈ (T −a)⊡ q,
which exists by Lemma 2.4. In the case of a field K , this can be done using the usual division
algorithm for polynomials over K . For the tropical hyperfield, there is a similar, but slightly
more involved, algorithm, which we describe in the following.

Let p =
∑

ci T i be a polynomial of degree n over T. By Theorem 3.1, there is a unique
sequence a1 ⩽ · · · ⩽ an of tropical numbers such that c−1

n p ∈ ⊡ (T + ai ). Since the roots of
c−1

n p are the same as the roots of p, we conclude that the roots of p are a1, . . . , an , counted
ith multiplicities. Fix a root a ∈ {a1, . . . , an} of multiplicity m, i.e.

a = ak = . . . = ak+m−1

or some k ∈ {1 . . . , n−m +1} and ak−1 < ak if k ⩾ 2 as well as ak+m−1 < ak+m if k ⩽ n−m.
If a = 0, then c0 = 0 and q =

∑n−1
i=0 ci+1T i is the unique polynomial such that p ∈ (T −0)⊡ q.

Thus let us assume from here on that a is not zero. We can determine a polynomial
=

∑
di T i of degree n − 1 with p ∈ (T + a)⊡ q by the following recursive definition.

(1) If k ⩽ n −m, then let dn−1 = cn . For i = n −2, . . . , k +m −1, we define (in decreasing
order)

di = max{ci+1, adi+1}.

(2) If k ⩾ 2, then let d0 = a−1c0. For i = 1, . . . , k − 2, we define (in increasing order)

di = max{a−1ci , a−1di−1}.

(3) For i = k − 1, . . . , k + m − 2, we define

d = a · · · a c .
i i+2 n n
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Theorem 3.4. If a ̸= 0 is a root of p, then the polynomial q =
∑

di T i as defined above
satisfies p ∈ (T + a)⊡ q, i.e.

cn = dn−1, c0 = ad0 and ci ∈ (adi ) ⊞ di−1 for i = 1, . . . , n−1.

Remark 3.5. The recursion in step (1) stays in a direct analogy to the division algorithm for
polynomials over a field, which is given by the formulas dn−1 = cn and di = ci+1+adi+1 where

decreases from n − 2 to 0. In the tropical setting, step (1) of the algorithm fails in general
to provide the required result if used to define all coefficients of q, cf. Section 3.3. To achieve
p ∈ (T + a)⊡ q , one needs to define the coefficients di for smaller i in terms of step (2).

In contrast, the coefficients di occurring in step (3) could also be defined by the recursions
(1) or (2)—all three definitions yield the same result in this case. We opted for the definition
as it is because it is explicit and therefore useful for calculation, and it is this form that we
use in the proof of Theorem 3.4.

Another facility in calculating the coefficients of q is that whenever ai < ai+1, then
i = ai+1 · · · ancn . In the course of the proof of Theorem 3.4, we show that adi ⩽ ai+1 · · · ancn

or k+m−1 ⩽ i ⩽ n−1 and di ⩽ ai+2 · · · ancn for 0 ⩽ i ⩽ k−2. Thus we have di = ci+1 if k+

m−1 ⩽ i ⩽ n−2 and ai+1 < ai+2, and we have di = a−1ci if 1 ⩽ i ⩽ k−2 and ai < ai+1. This
eans that the recursive definitions in steps (1) and (2) are only needed if multiple zeros other

han a occur. In particular, q can be defined explicitly and is unique if all zeros of p are simple.
If multiple zeros occur, then q =

∑
di T i is in general not the unique divisor of p by T +a,

but it is maximal among all such divisors in the following sense: if p ∈ (T +a)⊡ q ′ for another
polynomial q ′

=
∑

d ′

i T
i , then d ′

i ⩽ di . This additional statement is easily derived from the
proof of Theorem 3.4, but we will forgo to spell out the details.

3.3. An example

As an illustration of the division algorithm and of some observations from Remark 3.5, we
consider the tropical polynomial p = T 3

+ rT 2
+ T + r and a = r where r > 1. The roots of

p can be determined from the Newton polygon of p, which is the maximal convex function
ρ : [0, 3] → R with ρ(i) ⩽ − log ci for i = 0, . . . , 3. Its graph looks as follows:

0

− log r

1 2 3

(0, − log c0)

(1, − log c1)

(2, − log c2)

(3, − log c3)

i

ρ(i)

The roots of p can be calculated from ρ by the formula ai = exp
(
ρ(i) − ρ(i − 1)

)
; cf.

[2, Thm. 4.1] for details. This yields the roots a1 = a2 = 1 and a3 = r of p. We encourage
he reader to convince herself or himself that indeed p ∈ (T + 1)⊡ (T + 1)⊡ (T + r ).

Thus we see that a = r = a3 is a root of p of multiplicity 1. We are prepared to execute
he algorithm to determine q =

∑
di T i . In our example, we have k = 3 and m = 1. Thus only

teps (2) (for i = 0, 1) and (3) (for i = 2) of the algorithm apply to determine the coefficients
i of q . We calculate for increasing i = 0, . . . , 2:

d = a−1c = 1, d = max{a−1c , a−1d } = r−1, d = c = 1.
0 0 1 1 0 2 3
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Thus we find that q = T 2
+ r−1T + 1 is a divisor of p by T + r . Once again, we encourage

the reader to verify that indeed p ∈ (T + r )⊡ q.
In order to exhibit some of the earlier mentioned effects that occur in the tropical setting and

differ from the situation of polynomials over a field, we analyse this example in more detail.
To begin with, we determine all polynomials q ′

=
∑

d ′

i T
i that satisfy p ∈ (T + a)⊡ q ′, i.e.

c3 = d ′

2, c2 ∈ ad ′

2 ⊞ d ′

1, c1 ∈ ad ′

1 ⊞ d ′

0, c0 = ad ′

0.

The first and last condition imply that d ′

2 = c3 = 1 and d ′

0 = a−1c0 = 1, respectively. Using
reversibility (HG6), the two middle conditions can be rewritten as

d ′

1 ∈ (ad ′

2) ⊞ c2 = [0, r ] and d ′

1 ∈ (a−1d ′

0) ⊞ (a−1c1) = [0, r−1],

which are simultaneous satisfied if and only if d ′

1 ∈ [0, r−1]. Thus the divisors of p by T + a
re precisely the polynomials of the form qs = T 2

+ sT + 1 with s ∈ [0, r−1].
This shows that there are several divisors qs of p by T + r . Note that q = qr−1 is maximal

mong all divisors. It also shows that the naive attempt to find a divisor q̃ =
∑

d̃i T i in terms
f elementary symmetric polynomials d̃i = σ2−i (a1, a2), i.e.

q̃ = T 2
+ max{a1, a2}T + a1a2 = T 2

+ T + 1

ails to provide a divisor of p by T + r , in contrast to the situation over a field.
This example also shows that we cannot replace step (2) of the division algorithm neither

y (1) nor by (3). To wit, step (1) produces the coefficients

d2 = c3 = 1, d1 = max{c2, ad2} = r, d0 = max{c1, ad1} = r2,

nd step (3) produces the coefficients

d2 = c3 = 1, d1 = a3c3 = r, d0 = a2a3c3 = r,

hich both fail to provide a divisor q =
∑

di T i of p by T + ar .
An example where step (2) fails to provide a divisor of p by T + a is the polynomial

p = T 3
+ rT 2

+ T + r with r ∈ (0, 1) and the root a = r . To wit, the roots of p are a1 = r
nd a2 = a3 = 1. We have p ∈ (T + r )⊡ q if and only if q = T 2

+ sT + 1 with s ∈ [0, r ].
ut the steps in (2) produce the polynomial r−2T 2

+ r−1T + 1, which is not a divisor of p by
T + r .

.4. The proof of Theorem 3.4

Let a, a1, . . . , an ∈ T and the polynomials p =
∑

ci T i and q =
∑

di T i be as in
heorem 3.4, i.e. c−1

n p ∈ ⊡ (T + ai ) is the unique factorization into linear terms with
1 ⩽ · · · ⩽ an , the nonzero element a is a root of p and the di are defined by the algorithmic

steps (1)–(3). In this section, we prove Theorem 3.4, i.e.

cn = dn−1, c0 = ad0 and ci ∈ (adi ) ⊞ di−1 for i = 1, . . . , n−1.

If k ⩽ n − m, then cn = dn−1 follows immediately from the definition in step (1). If
k = n − m + 1, then di−1

The relation cn = dn−1 follows immediately from the definition in step (1) if k ⩽ n − m
nd the definition in step (1) if k = n − m + 1. The relation c0 = ad0 follows immediately
rom the definition in step (2) if k ⩾ 2. If k = 1, then a = a1 and according to the definition
n step (3),

ad0 = aa2 · · · ancn = a1 · · · ancn = c0,

s desired.
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Since ci ∈ (adi ) ⊞ di−1 if and only if the minimum among ci , adi and di−1 occurs twice,
he relation ci ∈ (adi ) ⊞ di−1 is satisfied for i = k + m, . . . , n − 1 and i = 1, . . . , k − 2 by
he very definition of di−1 in (1) and di in (2), respectively.

Since a = ai+1 for i = k − 1, . . . , k + m − 2, we have that

adi = aai+2 · · · an = di−1

or i = k, . . . , k +m −2, and thus adi ⊞ di−1 = [0, di−1]. The relation p ∈ ⊡ (T +ai ) means
hat

ci ⩽ ai+1 · · · ancn = di−1,

and thus ci ∈ adi ⊞ di−1 for i = k, . . . , k + m − 2, as desired.
We are left with i = k − 1 and i = k + m − 1, which are the critical cases that exhibit the

ompatibility between the different steps in the division algorithm.
We begin with the case i = k − 1. Since ak−1 < ak , we have ck−1 = ak · · · ancn . By the

efinition in step (3) and since a = ak , we have

adk−1 = akak+1 · · · ancn = ck−1.

f we can show that dk−2 ⩽ ak · · · ancn , then we obtain ck−1 ∈ adk−1 ⊞ dk−2 as desired.
We claim that d j ⩽ a j+2 · · · ancn for j = 0, . . . , k − 2, which we will prove by induction

on j . The case j = k −2 is the missing inequality to conclude the proof of the case i = k −1.
or j = 0, we have indeed that d0 = a−1c0 ⩽ a2 · · · ancn since a1 ⩽ a. For j = 1, . . . k − 2,
e have a j+1 ⩽ ak = a and thus a−1a j+1 · · · ancn ⩽ a j+2 · · · ancn . Since c j ⩽ a j+1 · · · ancn by
ur assumptions and d j−1 ⩽ a j+1 · · · ancn by the inductive hypothesis, we get

d j = max{a−1c j , a−1d j−1} ⩽ a−1a j+1 · · · ancn ⩽ a j+2 · · · ancn,

hich verifies our claim and concludes the proof of the case i = k.
We turn to the case i = k + m − 1. By the definition in step (3), dk+m−2 = ak+m · · · ancn .

Since ak+m−1 < ak+m , we have ck+m−1 = ak+m · · · ancn = dk+m−2. If we can show that
dk+m−1 ⩽ ak+m · · · ancn , then we obtain the desired relation ck+m−1 ∈ adk+m−1⊞ dk+m−2.

We claim that ad j ⩽ a j+1 . . . ancn for j = n − 1, . . . , k + m − 1, which we will prove
by induction on j (in decreasing order). The case j = k + m − 1 is the missing inequality
to conclude the proof of the case i = k + m − 1. For j = n − 1, we have dn−1 = cn and
⩽ an . Thus adn−1 ⩽ ancn , as claimed. For l = n − 2, . . . , k + m − 1, we have a ⩽ a j+1.

Since c j+1 ⩽ a j+2 · · · ancn by our assumptions and ad j+1 ⩽ a j+2 . . . ancn by the inductive
hypothesis, we get

ad j = a · max{c j+1, ad j+1} ⩽ a j+1a j+2 · · · ancn,

as claimed. This concludes the proof of Theorem 3.4. □

4. Factorizations of sign polynomials

A sign polynomial is a polynomial over the sign hyperfield S. In this section, we classify
all irreducible sign polynomials and show that the sign hyperfield fails to have the unique
factorization property. Still it admits a division algorithm for the division of sign polynomials

by linear terms, in analogy to the division algorithm for tropical polynomials.
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4.1. Classification of the irreducible polynomials

Since a sign polynomial p is irreducible if and only if ap is irreducible for any a ∈ S×, we
can restrict our attention to monic irreducible sign polynomials.

Theorem 4.1. The monic irreducible sign polynomials are T , T − 1, T + 1 and T 2
+ 1.

roof. It is clear that every linear polynomial is irreducible, cf. Section 2.3. Thus T , T − 1
nd T + 1 are precisely the monic irreducible polynomials of degree 1.

Given a monic irreducible sign polynomial p =
∑

ci T i , let ĉi ∈ R be real numbers with
ign(ĉi ) = ci . By Lemma 2.1, the monic real polynomial p̂ =

∑
ĉi T i is irreducible as well.

e know that the monic irreducible real polynomials are either linear or quadratic with positive
onstant term ĉ0 > 0. Thus if p is not linear then it must be of the form T 2

+aT +1 for some
∈ S.
By Lemma 2.6, a quadratic polynomial is irreducible if and only if it does not have a root.

e can verify this for all polynomials of the form T 2
+ aT + 1: while T 2

+ T + 1 has −1
s a root and T 2

− T + 1 has 1 as a root, T 2
+ 1 is the only quadratic polynomial of this

hape that does not have a root. This completes our classification of the monic irreducible sign
olynomials. □

.2. The failure of unique factorization

It is easy to see that the unique factorization property holds for sign polynomials of degree
2. The following example shows that this property fails from degree 3 on.
Consider the sign polynomial p = T 3

+ T 2
+ T +1. Then −1 is a root of p, i.e. 0 ∈ p(−1).

hus there is a polynomial q = d2T 2
+d1T +d0 such that p ∈ (T +1)⊡ q , which is equivalent

o

d0 = 1, d2 = 1 and 1 ∈ 1 ⊞ d1.

he equation 1 ∈ 1 ⊞ d1 is true for all d1 ∈ S, which means that p is an element of all the
hree hyperproducts

(T + 1)⊡ (T 2
+ 1), (T + 1)⊡ (T 2

+ T + 1) and (T + 1)⊡ (T 2
− T + 1).

he factors T 2
± T + 1 factorize into T 2

+ T + 1 ∈ (T + 1)⊡ (T + 1) and T 2
− T + 1 ∈

T −1)⊡ (T −1), respectively. The factor T 2
+1 is irreducible. Thus we find the three different

actorizations

(T +1)⊡ (T 2
+1), (T +1)⊡ (T +1)⊡ (T +1) and (T +1)⊡

(
(T −1)⊡ (T −1)

)
f T 3

+ T 2
+ T + 1.

In fact, this example shows that sign polynomials cannot have the unique factorization
roperty with respect to any concept of factorization that is preserved under morphisms, in
he sense of Lemma 2.1. Indeed, the sign map sign : R → S maps both real polynomials

T 3
+ T 2

+ T + 1 = (T + 1)(T 2
+ 1) and T 3

+ 3T 2
+ 3T + 1 = (T + 1)3 to p.
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4.3. A division algorithm

In spite of the failure of unique factorization, there is still an algorithmic way to determine a
ivisor of a sign polynomial by a linear term. Such a division algorithm was already exhibited
n the proof of Theorem 3.1 in [2] for a restricted class of sign polynomials. In the following,
e describe an extension of this division algorithm that applies to all sign polynomials.
As a preliminary consideration, we observe that if a = 0 is a root of a sign polynomial

p =
∑

ci T i , then c0 = 0 and q =
∑

ci+1T i is the unique sign polynomial such that
p ∈ T ⊡ q . Thus it suffices to describe the division algorithm for nonzero roots a ∈ S×

= {±1}

nly.

heorem 4.2. Let p =
∑

ci T i be a sign polynomial of degree n with root a ∈ {±1}. Define

l = min
{

i ∈ N
⏐⏐ ci ̸= 0

}
and k = min

{
i ∈ N

⏐⏐ ci+1 = −ai+1−lcl
}
.

efine recursively for i = n − 1, . . . , 0 (in decreasing order)

di = ci+1 if ci+1 ̸= 0 and i > k; (1)

di = adi+1 if ci+1 = 0 and i > k; (2)

di = −ai+l−1cl if l ⩽ i ⩽ k; (3)

di = 0 if 0 ⩽ i < l. (4)

hen p ∈ (T − a)⊡ q for q =
∑

di T i .

roof. Once we have proven the theorem for the root a = 1 of p =
∑

ci T i , we can derive the
ivision algorithm for the root −1 by applying the division algorithm for a = 1 to p(−T ) =

(−1)i ci T i and using that p ∈
(
T − (−1)

)
⊡ q if and only if p(−T ) ∈ −(T − 1)⊡ q(−T ).

hus the case a = −1 follows by a straight forward calculation from the case a = 1.
We proceed with the proof for a = 1. Recall that p ∈ (T − 1)⊡ q if and only if

cn = dn−1, c0 = −d0 and ci ∈ (−di ) ⊞ di−1 for i = 1, . . . , n − 1.

We begin with cn = dn−1. If k < n − 1, then dn−1 = cn by (1) since cn ̸= 0. If k = n − 1,
hen cn = −cl by the definition of k and thus dn−1 = −cl = cn by (3). Thus cn = dn−1, as
esired.

We proceed with c0 = −d0. If l = 0, then d0 = −c0 by (3). If l > 0, then c0 = 0 and
0 = 0 = c0 by (4). Thus c0 = −d0, as desired.

We proceed with ci ∈ (−di ) ⊞ di−1 for 1 ⩽ i ⩽ n − 1. If 1 ⩽ i < l, then ci = 0 and
i−1 = di = 0 by (4). Thus ci ∈ (−di ) ⊞ di−1, as desired.

If i = l, then cl ̸= 0, dl = −cl by (3) and dl−1 = 0 by (4). Thus ci ∈ (−di ) ⊞ di−1, as
esired.

If l < i ⩽ k, then di−1 = di = −cl ̸= 0 by (3) and the definition of l. Thus
i ∈ (−di ) ⊞ di−1, as desired.

If i = k + 1, then ck+1 = −cl ̸= 0 by the definitions of k and l. Thus dk = −cl ̸= 0 by (3),
nd ci ∈ (−di ) ⊞ di−1, as desired.

If k +1 < i ⩽ n −1 and ci ̸= 0, then di−1 = ci ̸= 0 by (1). If k +1 < i ⩽ n −1 and ci = 0,
hen di−1 = di by (2). Thus in both cases ci ∈ (−di ) ⊞ di−1, as desired. This concludes the
roof of the theorem. □
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